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STRESS F IELD OF I N C O M P L E T E  S H E A R  AND C O M B I N A T I O N S  OF 

I N C O M P L E T E  S H E A R S  D U E  TO E L A S T I C  I N T E R A C T I O N  

V . V .  Neverov UDC 539.3 

A stress field of incomplete shear and effects due to elastic interaction of incomplete shears are 
considered. 

Defini t ion of  I n c o m p l e t e  Shear  and Re la t ion  wi th  Dislocat ions.  Incomplete shear (ISh) is a 
portion of a plane of shear in which the shear displacements are larger than in the rest of the plane, where 
the state is considered elastic. The concept of ISh is used to describe the plastic deformation of elastic bodies. 
One-dimensional crystalline models of ISh for its edge in the direction of shear (the Frenkel'-Kontorova and 
Kosevich models of an edge dislocation) [1] lead to a symmetric distribution of shear displacements of atoms 
relative to the edge of ISh. This distribution is used as the boundary condition in solution of a two-dimensional 
elastic problem, and it predetermines an elastic field that is symmetric about the line that passes through 
the atomic extraplane (the Peierls-Nabarro model of an edge dislocation) [1]. In [2], the field of ISh is found 
by direct solution of a plane elastic problem (without using results of the one-dimensional model). This field 
differs from the Peierls-Nabarro field and, in particular, does not exhibit the symmetry indicated above. In 
[2], mass transfer by plastic shears is considered and the distribution of only relative dilatation (hydrostatic 
pressure) in the elastic field of ISh is shown. 

According to the Weingarten theorem [3], if no special assumptions on the shape of a cut are adopted, 
Volterra dislocations can be generated only in a multiply connected body and only in the case where the cut 
whose edges undergo rigid displacements reduces the connectivity of the body. ISh is produced in a simply 
connected body, and, hence, it leads to formation of a Somigiiana's dislocation. It is natural to believe that in 
crystals, i.e., in bodies that  exhibit translational symmetry, the relative displacements of points at the edges 
of a cut are equal to the translation vector, and, hence, u = const on a considerable portion of the cut length. 
Therefore, crystal dislocations are usually modeled by Volterra dislocations. However, in many cases, there 
is no reason to assume that  the relative displacements of points at the edges of a cut are constant quantities 
(the edges of the cut move as a rigid body). Among these cases are shears along grain boundaries, interfaces, 
in amorphous bodies, and along surfaces of contact of solids, i.e., the cases where the translational symmetry 
on the surfaces of a cut is broken. Indeed, by the adopted definition of ISh, the displacements in an ISh region 
are not related to the translation vector, and, hence, atomic correspondence is not assumed in the ISh region. 
The concept of ISh can be used to describe shears in crystals if u ~ const, for example, when a shear is related 
to a large number of translational dislocations or interlayers of twins or martensite phases whose thickness is 
not constant. 

The magnitude of displacements in an ISh region and, hence, the field related to the ISh, depend on 
the external field. Residual fields are described in terms of dislocations. Plastic deformation is determined 
by the fields acting in loaded bodies. The choice of incomplete shears instead of dislocations as structural 
elements allows one to describe fields both in unloaded and loaded bodies. 

Thus, there are two reasons why ISh should be studied: the novelty of the elastic field and new regions 
of application. In the present paper, we study an elastic field of ISh for a plane model in an external stress field 
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that  becomes a homogeneous shear at infinity, and also the effects due to the elastic interaction of incomplete 
shears. 

F o r m a t i o n  I S h  a n d  I t s  C o n t r i b u t i o n  to  M a c r o d e f o r m a t i o n .  We consider an infinite plane in 
an external homogeneous shear stress field with maximum tangential stresses too directed at angles a and 
a+Tr/2  to the x axis (Fig. la, here and below, ISh regions are shown by thick segments). Let [r] be the critical 
resistance to shear in the region - 1  < z < 1, y = 0, and a = 0. As long as too ~ H ,  the deformation is elastic 
(segment AB in Fig. lb, which shows the projection of the shear displacement u -- uz at the coordinate origin 
and the relative macroshear strain 7 versus stress too). When the condition 

700 > [7] (i) 

is satisfied with increase in 7oo, the shear displacements in the region grow and become large (plastic) compared 
to the elastic displacements in the rest of the plane. ISh is produced. The macroscopic plastic shear strain 
due to microshear with a uniform displacement in the entire shear region b is 

"}'plast = bA/L 2, (2) 

where A is the size of the shear region and L is the size of the specimen. The distribution of large displacements 
of points adjacent to the ISh region on one side relative to points adjacent to the ISh region on the other side 
[2] is described by 

u(z) = 2(1 - v) r _ z2)(roo _ [r]). (3) 
P 

Here u is the Poisson ratio, p is the shear modulus, 21 is the length of the ISh region; too should be considered 
a tangential stress that would operate in the ISh region without formation of ISh. From (2) and (3) we obtain 

l 
~p]ast ~- _/U(X) L - 2 d x  "- 

~r(X v) 
pL 2 (roo --[r])/2. (4) 

-I  

The dependence of u(z) on 7oo (3) and the dependence of 7pl on 7oo (4) are linear in the plastic region (segment 
BD in Fig. lb). 

The elastic field of ISh, tending to unload, produces fictitious reverse stresses 7fict in the ISh region. 
The equilibrium condition has the form 

7oo - - = 0. (5) 

During unloading, rfict tends to produce reverse displacements in the ISh region. The sign of jr] changes, 
and this prevents reverse motion. If [tool <~ 2[r], then [rfictl does not exceed [r] and plastic displacements 
remain (polygonal line BCG). If r~o > 2[r], then [r~ct[ > [7] and plastic displacements decrease (polygonal 
line BDFG) until new equilibrium is attained: Iv] + 7flct = 0. The remaining defect is a Somigliana's 
dislocation, because it can be produced by generating these dislocations: by cutting along the ISh region, 
shear displacement of the cut edges, attachment of the edges, and elimination of external forces. If [7] = 0, 
ISh disappears during unloading and, hence, the field of ISh is entirely a singularity of the external field. 
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According to [2], the resulting field is 

~ij = (~ij)~o + ( ~ ) . , ,  (6) 

where (ai j )~  is the external homogeneous shear field, (o'ij)eat is the field of the cut in the ISh region whose 
edges axe exposed to uniform tangential s t r e s s e s  r o u t  = t o o  - [r]. These stresses axe directed so as to increase 
the displacements produced by the external load. Since, in reality, there are no external loads at the cut edges, 
the increase in displacements along the cut corresponds to weakening of the interaction of the cut edges. As 
a result, the tangential stresses in the ISh region remain equal to [r] as shear develops. For the homogeneous 
shear field adopted here, the first term in (6) is proportional to r~ ,  and the second is proportional to (r~  - Iv]). 
Therefore, the contribution of the second term, which describes the stress-field singularities related to ISh, 
increases with increase in too. The ISh model considered is valid if 

%00 --[7"] = ~'cut = const. (7) 

In what follows, it is assumed that l = 1, and the stresses are referred to [~']. For the stresses themselves, 
the notation is such that [~'] = 1. Then, for example, rec/[v] = rr162 

Elast ic  Fie ld  o f  ISh. The distribution of the stress-tensor components of the second term in (6) for 
rcut = 1 is shown in Fig. 2 [regions in which az= < -0.125 (compression), ayy < -0.0625 and ~'=y > 0.05 are 
denoted by crosses and regions in which az= > 0.125, r > 0.0625, and ~'=y < -0 .05  are denoted by dots). 
Note that the field in Fig. 2 gives a qualitative illustration of both the singularities of the external field near 
the [Sh and the residual field of the Somigliana's dislocation formed at the site of ISh. 

In the present paper, we consider plastic deformation that occurs by shear mechanisms. Therefore, 
the distribution of vxy is the determining factor. The influence of ISh can manifest itself as changes in the 
tangential stresses and the direction of lines of maximum tangential stresses. The run of lines of maximum 
tangential stresses for voo = 20, i.e., at high overstresses, at which the contribution of the ISh singularities 
to the resulting field is significant, is shown in Fig. 3 for a = 0 and 22.5 ~ (portions of the lines in which 
1 < "rmax < 1.05 are marked by crosses and those in which rmax > 1.05 are marked by rectangles). Outside of 
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T A B L E  1 

No. ISubsequentlSh [ k i Combination formed 

In the field of ISh (z, 0, 0) 

1 (z,2.4,0) 1.150 - -  

2 (y, 0, 1.9) 1.049 Chain along Oy 

3 (y, 2.1,0) 1.037 Chain along Oz 

4 (z, 0,1.9) 1.030 Packet 

In the field of ISh (z,0,0)  and (y,0,2) 

5 (y, 0 , - 2 )  1.076 Chain along Oy 

6 (z, 0, 4) 1.056 The same 

7 (z, 0, --1.7) 1.054 Packet 

8 (z, 2, 2.2) 1.023 Grid 

(y,3,o) 1.019 ~. 

In the field of a chain of ISh (y, o,2), (=,0,0), and (y,o,-2) 

10 (z,0,4) 
11 (y, 4.7, 0) 

1.065 Chain along Oy 

1.016 Grid 

In the field of a packet of ISh (z, 0, 0.5) and (z, 0, -0.5) 

12 

13 

14 

15 

(y, 0, 2.4) 

(z, 2.6, 0) 

(y, 2.1, 0) 

(z, O, 2.4) 

1.083 

1.060 

1.054 

1.053 

Chain along Oy 

Chain along Oz 

Packet 

Note .  For No. 1, k(z) does not have a maximum and k decreases with increase 
i n z .  

the circular region adjacent to ISh and having a somewhat greater radius than l, the directions of the maximum 
tangential stress curves are practically the same as in the field before formation of ISh. The plane outside of the 
indicated region can be divided into eight approximately equal sectors with a center at the coordinate origin. 
Sectors with increased and decreased tangential stresses alternate. Thus, the field singularities due to [Sh do 
not change the directions of regions of subsequent ISh but only specify their locations. The most probable 
secondary ISh regions are located parallel to the same mutually perpendicular directions along which primary 
ISh are most probable. The centers of secondary ISh regions are shifted from the centers of primary-shear 
regions along the lines of maximum tangential stresses, i.e., along the same mutually perpendicular directions. 

Combinat ions  of  ISh.  In subsequent calculations, we determined the most probable spacing between 
the centers of ISh and estimated the probabilities of various combinations of ISh. The case a = 0 is studied in 
detail. To determine the probabilities, we used the three methods described below. The force method implies 
that the more rigorous inequality (1), the more probable the formation of ISh (however, the formation ISh 
is due not only to determined factors but also to random factors). Random factors were taken into account 
using the energy method, which implies that those ISh are probable for which the development is justified 
energetically. The synergy method implies that those combinations of ISh are preferred in which there are 
positive force relations and feedbacks between ISh. 

The field in Fig. 3 for a = 0 determines two possible schemes of interaction of ISh: a scheme in which 
ISh are mutually amplified if secondary ISh are located in regions with increased tangential stresses (the 
sectors containing the coordinate axes), and a scheme in which ISh are mutually weakened if secondary ISh 
are located in the rest of the plane (the circular region and diagonal sectors). The first scheme is more probable 
than the second by all three methods. 

298 



h 

1.0 

0.9 

0.8 

0.7 
0.5 1.5 

paE 

- 8  

-10 

-12 

-14 
y 2.5 

'511 t I I I II 
'I[ II L 

VVI I I - t l  F i I I ] i  
I J J l  I I II 
I I11 !::!IF! I I II 

-15 0 ,x 15 

Fig. 4 Fig. 5 

In the calculations, we assumed that  the lengths of ISh regions are identical and equal to 2. To designate 
ISh, we used the notation of the axis to which the shear region is parallel and the notation of the coordinates 
of the center of the ISh region; for example, for the ISh region in Fig. la, we write (x, 0, 0). In the calculations, 
we specified a number of ISh regions that  are parallel to the maximum tangential stress curves, calculated the 
coefficient k = (rmax)/roo, where (rm~) is the average maximum tangential stress in the regions of possible 
location of ISh, and selected the region for which the value of k is maximal [in Fig. 4 the crosses shows the 
dependence of k versus y for ISh (x, 0, y) in the field of ISh (x, 0, 0) at too = 3]. The coefficient k characterizes 
the effect of a primary ISh on a secondary ISh. Then, we calculated the k of the reverse effect of the secondary 
ISh on the primary ISh. The  resulting fields were found with allowance for both coefficients. In the fields of 
mutual amplification of ISh, k > 1. 

The maximum tangential stresses acting in subsequent ISh regions differ by not more than 0.05 from 
the average value of this stress for the corresponding region. Ignoring these deviations, we assumed that  
condition (7) is satisfied and used the ISh model described above to calculate the fields of combinations of 
ISh. 

Table 1 gives the initial combinations of ISh, the coefficients k for subsequent ISh, and the combinations 
of ISh formed. 

CaIculation results (see Table 1) show that  the development of the initial ISh (No. 1) is most probable. 
This shear region grows through the body. After that,  the stress field becomes homogeneous, and the process is 
repeated. The second most probable scheme involves formation of a chain of ISh with mutually perpendicular 
regions whose centers are displaced from one another by about 2 along one of the coordinate axes (Nos. 2, 3, 
5, 6, and I0). With increase in the number of ISh in the chain, the coefficient k somewhat increases (Nos. 2 
and 10). In addition, the probability of formation of a packet, i.e., a combination of ISh consisting of several 
closely spaced ISh with parallel regions, increases (Nos. 4 and 7). With formation of packets, k increases. 
Consequently, the direct relationships and feedbacks between ISh are enhanced and the probability of regular 
arrangement of ISh increases. This is evident from comparison of the values of k for Nos. 2 and 12, 3, and 14 
and the curve shown by crosses in Fig. 4 and the solid curve that  characterizes k for ISh (x, 0, y) in the field 
of a packet consisting of three ISh [(x, 0, -0.4) ,  (x, 0, 0), and (x, 0, 0.4)] for too = 3 in the same figure. 

The next probable scheme is a combination ISh in which the centers of ISh are located at nodes of 
an approximately square grid and the nearest ISh regions are mutually perpendicular. The formation of ISh 
chains elongated along diagonals that  bisect the angle between the coordinate axes is least probable (Nos. 8, 
9, and 11). In this case, chains of ISh are located on one side of the diagonal. Compared to such a chain, 
the formation of a square grid of ISh is more probable, because in the grid, the mutual  positive relationships 
between ISh are stronger. 

Figure 4 shows a curve of #AE(y) ,  where A E  is the change in the elastic energy of a square with 
center at the coordinate origin and side equal to 6 due to formation of a secondary ISh (x, 0, y) in the field of 
the starting ISh (x, 0, 0) for 7"0o = 3. To simplify treatment of the results, it was assumed that  the system is 
closed, and, hence, the points at which external loads are applied are motionless and the total strain, which 
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is equal to the sum of the elastic and plastic strains, is fixed: 

"7 = %last + 7plast =cons t  (8) 

['Ypla~t was calculated from formula (4)]. The scattered energy Q was calculated as the work on overcoming [r]: 

! 

Q = [ ax  = - (Too - 2. (9)  
d # 
- !  

The fact that the elastic energy decreases by an amount larger than Q (Q# = 4.4) indicates the possibility of 
formation of ISh in a region in which k < 1. 

Combinations similar to those described above were obtained by modeling ISh by Volterra dislocations 
[2] for which u _~ const on 0.9 of the length of the ISh region. The only difference is that the chains along the 
x axis become more probable than the chains along the V axis. 

C o m b i n a t i o n s  of  Cha ins  of  ISh.  Figure 5 shows curves of maximum tangential stresses and the 
distribution of these stresses in the field of the most probable combination of ISh - -  a chain consisting of five 
ISh [(x,-4,0) ,  (y , -2 ,0 ) ,  (z,0,0),  (g,2,0), and (z,4,0)l for Too = 3 (regions with 3 < rm~x < 3.015 are shown 
by crosses and regions with r , ,=  > 3.015 are shown by rectangles). The similarity of the distributions in Figs. 
3 and 5 for cr = 0 outside of the regions adjacent to ISh suggests that if a chain of ISh is taken as the element, 
the probable combinations of these elements will be the same as for individual ISh. The indicated similarity 
between the configurations of fields and the combinations of shears provided that shears initially develop at 
smaller scale levels and then at large scale levels makes it possible to describe plastic deformation in terms of 
fractal structures. 

During plastic deformation, besides the ISh regions considered, ISh form in regions having smaller 
dimensions, and diffusion mass transfer develops. These processes change the elastic field described by (6) 
and are not taken into account in our analysis. 

C o m p a r i s o n  w i t h  E x p e r i m e n t .  The value of the.left side of inequality (1) depends on the stress field, 
and the value of its right side is influenced by the anisotropy of the crystal. In crystals there are crystallographic 
planes and directions in them (twinning systems, easy-slip systems, and martensite transformations) for which 
[r] are lower than in other planes and directions. When the anisotropy is pronounced, small departures from 
the orientation of elements of the systems cause a sharp increase in [T]. Therefore, we sought confirmation 
of the results in experimental manifestations of the established regularities of the mutual location of ISh and 
not in coincidence of the experimentally observed ISh regions with curves of maximum tangential stresses. 

Mogilevskii [4] observed a number of such regularities in shock-wave deformation of zinc single crystals. 
Under these conditions, a plane deformation scheme is realized. In the plane of strain that is parallel to the 
wave front, a homogeneous shear stress field acts (ignoring fields of ISh). The stress level increases with 
approach of the shock wave. The projections of displacements in twinning planes onto the plane of strain are 
different from zero. Therefore, the two-dimensional scheme adopted in the analysis describes the situation 
in the plane of strain. The short duration of loading eliminates the course of relaxation processes by the 
mechanisms of diffusion and dislocation ISh of a small scale level, so that Eq. (6) is valid. Owing to the 
pulsed character of loading, the acting stresses far exceed [r], and, hence, the effect of singularities of the 
fields generated by ISh on the development of the deformation process is increased. Thus, Mogilevskii [4] 
reproduced conditions that are close to those adopted in our analysis. 

In [4], the predominant deformation mechanism was twinning. The twins in deformed specimens were 
treated as ISh regions. 

Mogilevskii described [4] the case of "parquet" twinning. Here, of the six possible systems, two 
twinning systems act. The angle between the planes of these systems is close to 90 ~ (the angle between 
the crystallographic planes of "parituet" twins is 93.8~ The linear dimensions of twins of different systems 
are roughly identical. Twins of each system form packets, and packets of different systems are located in 
checkered order, and their centers form a square grid. These regularities agree with the results of our analysis. 

300 



Mogilevskii [4] observed twinning in planes in which the tangential stresses calculated ignoring ISh 
fields were absent; this effect was explained [4] by the stress fields generated by shear displacements along 
twinning interlayers. This is also in agreement with our concepts. 

The author expresses deep gratitude to M. A. Mogilevskii for discussions of experimental results. 
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